Citrus Tree Roots From Nursery to Field

Ute Albrecht

ualbrecht@ufl.edu Southwest Florida Research and Education Center, Immokalee, FL University of Florida/IFAS

UNIVERSITY of FLORIDA

GCA Annual Conference 28 Feb 2022

What factors influence the citrus tree root structure?

Genetics
→ the rootstock cultivar

■ Environmental factors
→ soil properties

Other factors
→ propagation, planting

The Rootstock

Rootstock selection

Should be based on compatibility with the scion, soil characteristics, pest and disease pressure, desired size control/spacing, and other desired traits

Tree size effects

Rootstock freeze tolerance

Rootstock tolerance to freeze is highest in trifoliate orange (*Poncirus trifoliata*)

Trifoliata > TF Hybrids > Sour orange > Lemons

		Тор	15 Rootstoc	ks 2020-2021			
	2020	# Budded	2019	2018	2017	2016	
1	US-942	1,285,560	US-942	US-942	Swingle	Kuharske	
2	Kuharske	841,448	Kuharske	Swingle	US-942	X-639	
3	X-639	678,095	X-639	Kuharske	X-639		
4	Swingle	468,558	Swingle	X-639	Kuharske	CITRUS BUI	
5	Own Root	408,793	US-897	Sour Orange	Sour Orange	2020-2021	
6	US-812	296,664	US-812	US-802	US-802		
7	Sour Orange	176,322	Sour Orange	Volkamer	US-897		
8	US-897	160,288	US-802	US-812	UFR-04		
9	Volkamer	135,977	Volkamer	US-897	US-812		
10	US-802	119,887	C-54	Rough Lemon	C-35	and the second	
11	Rough Lemon	57,941	Rough Lemon	C-35	Cleopatra		
12	C-35	39,142	UFR-04	UFR-04	Volkamer		U
13	C-54	26,993	C-35	UFR-17	UFR-03		1
14	Poncirus trifoliata	18,106	C-57	Poncirus trifoliata	C-22	Florida Department of Agricu	ulture and Consumer Services
15	UFR-04	17,892	US-1777	US-1516	Carizzo	Rough Lemon	

Seed	Tissue Culture	Rooted Cutting
38 different rootstocks used	22 different rootstocks used	17 different rootstocks used
3,550,947 propagations	650,090 propagations	208,637 propagations
Top Seed = Kuharske	Top Tissue Culture = US 942	Top Rooted Cutting = US-942
(790,907 Propagations)	(583,560 Propagations)	(60,899 Propagations)

ሰ Home	Citr	rus Rootsto	ock Select	tion Gu	ide										
• • • • •	Home	e • Rootstock Tal	ole •												
⊕ Credits	Florid	la Citrus Rootstoc	k Selection Guid	le, 3rd Editio	on. Willian	n S. Castle, Kii	m D. Bowman,	Jude W. Gross	ser, Stephen	H. Futch a	nd James H.	Graham. The	authors al	so wish to	с
	grate Mr. C	fully acknowledge harles O. Youtsey	the following co	lleagues wh	io contribi	uted significant	ly to the first tv	vo editions of th	nis publicatio	n: Dr. Alfre	d H. Krezdori	i [deceased], I	Dr. David I	P. H. Tuck	ker and
Rootstock Table new	The la Huan	ast edition of this g glongbing [HLB]. I	guide was publis Rootstocks were	hed in 2006 not initially	. Much ha part of th	as changed sin e discussion re	ice then in the elated to manag	Florida citrus ir ging HLB, but t	ndustry mostl hat, too, has	y because changed p	of the discov particularly giv	ery and spread ren the accum	d of the ba ulating evi	acterial dis dence tha	sease, at trees
Notes on Rootstock Traits	on va expar	nious rootstocks n nding the list of roo	nay differ in the i	ncidence of de many tha	the disea at have no	ise. Therefore, it yet undergon	the authors ha	ive prepared th tensive field ev	nis timely and aluation in F	necessary orida. The	y update of th se new rootst	e former editio ocks offer imp	on as well rovements	as consid s of many	erably
EDIS PDF version	mean	Notes on Roots Obtaining the last	tock Traits	troi, nign yie	and jui	ce quality and	possible HLB	olerance that a	appear essen	tial to the I	uture of our c	atrus industry.			
✤ FDACS Rootstock Data		• Obtaining the C	IF TOOISLOCKS STI	own in the ta	adie as Ui	ΓK									
Query	0	Show/Hide C	olumns											Colu	mns ~
↔ Search Instructions	g	Drint Table to I													
+ FAQs	Print Table to PDF														
⊕ What's New	Show	v ei	ntries												
• • • • • •	Rootstocks			Horticultural Traits					Tolerances						
⊕ Contact Us <u>Key to Symbols</u> :		Rootstock	Year of first avail. [♦]	Seed Prop	Tree Size	Spacing	Yield per Tree	Yield per Acre [♦]	Juice Quality [♦]	Fruit Size ∲	Salinity 🎈	High pH [♦]	Clay Soil ∲	Wet Soil [♦]	Droug
G – Good H – High I – Intermediate	+	x-639 (Cleo x Rubidoux TF)	1994	G	Lg	8-12	1	I-H	H/H	I	G	[1]	[G]	[G]	?
L – Low Lg – Large	+	C-35 citrange	1994	G	I	8-10	1	I-H	H/I	1	[P-I]	Р	[P]	[1]	?
P – Poor R – Resistant	+	Carrizo	1932	G	Lg	8-12	Н	I-H	I-H/I	I-Lg	Ρ	Ρ	Р	I	G

https://crec.ifas.ufl.edu/extension/citrus_rootstock/explore.html

Seed propagation

Nucellar embryony (polyembryony)

Genetically identical embryos develop from the nucellar tissue

The rootstock

The rootstock

Cuttings and tissue culture propagation

Both methods produce genetically identical plants

Tissue culture propagation

Fast year-round production of uniform plants

Root systems

Field-ready plants

Field

Common perception of a tree's root system

More realistic representation

Roots extend well beyond the canopy perimeter (drip line)

Root crowns

Root crowns

Soil properties

Mechanical resistance

Roots are unable to grow into soils of high bulk density/compacted soils (e.g., fine sands, clays)

Aeration

Roots need oxygen to respire and produce energy (flooded and compacted soils have little oxygen)

Fertility

Infertile soils produce long poorly branched roots. Fertile soils produce more vigorous well-branched roots that may descend deeper into the soil

Moisture

Waterlogged soils create anerobic conditions causing root death. Wet soils create shallow and wide-spread root systems

https://www.tankonyvtar.hu/en/tartalom/tamop 425/0032_talajtan/ch05s03.html

Crow 2005

Florida soils

- Sandy (> 98%) with little organic matter (< 0.6%) and a low CEC (< 5 meq/100g)
- Well-drained on the central Florida Ridge
- Poorly drained in SW Florida and the east coast

Well drained sandy soil

Poorly drained soils

Furrow

Soil properties

Raised bed

Drainage

https://edis.ifas.ufl.edu/publication/CH165

Poorly designed drainage system

Soil properties

Other factors

Transplanting

- Inspect trees before purchasing and planting!
- Plant trees on the same day they are received
- Do not allowed trees to dry out!
- Loosen the potting medium to expose roots to the soil

Transplanting

- Pot-bound roots need to be pruned/slashed to encourage new growth
- Plant roots so they are in direct contact with the surrounding soil
- Plant trees slightly above the surrounding soil (do not bury the graft union)
- Don't throw fertilizer in the planting hole
- Water-in trees immediately after planting

Other factors

Pot-bound roots

Hirons and Thomas 2018

Pot-bound roots will continue to circle after transplanting into the field!

Pull-over studies to assess wind resistance

Other factors

Pot-bound roots

Other factors

Other factors

Eucalyptus trees have long roots!

Frost protection

The Great Freezes and the Collapse of the Florida Citrus Industry

The devastating winter of 1894 and 1895 dashed the dreams and fortunes of many new Florida settlers. Decades would pass before the state fully recovered.

Location

Florida farmers surveying damage after the great freezes (1894-95)

The Road To The Caloosahatchee

The Explosive Growth Of The Citrus Industry In Southwest Florida

Caloosahatchee History

By John A. Attaway

In colonial times, the Florida citrus industry had set its roots along the St. Johns River in northeast Florida. Over a period of years, the industry moved south, first to the lakes and hills of the central Florida ridge, to the Indian River, to the Peace River Valley, and finally, to the banks of the Caloosahatchee — a river that flows from Moore Haven on Lake Okeechobee, through Glades, Hendry, and Lee counties to empty into the Gulf of Mexico at Fort Myers.

Let's look at the factors which led to this final and massive move to southwest Florida, which began in the mid-1960s.

Period	Acreage						
	Hendry	Collier	Lee				
Before 1962	1491	631	1591				
1962-65	14,491	1974	417				
1966-69	7011	2423	5427				
1970-73	2630	290	432				
1974-77	7160	652	569				
1978-81	5502	2155	1924				
1982-85	10419	3168	1480				
1986-89	30,660	13,730	3020				
1990-93	24,419	9720	3609				
994-97	7527	1510	631				
lource: Florida /	Igricultural S	tatistics Servic	e				
1 Same	1.12	Contraction of the	i.				

First, it should be pointed out that citrus was not new to southwest Florida when the first central Florida growers moved south. Citrus fruit had been grown in Lee and Hendry counties for over 80 years, but on a much smaller scale than today. According to the *Ft. Myers News*-

Press, March 15, 1966, oranges were planted near Alva in 1877 and along the river in North Ft. Myers in 1885. Files at the Ft. Myers Historical Museum show that 15,000 boxes of fruit were shipped from the area prior to the great freeze of 1894-95, which destroyed the north Florida crop, Demand for southwest Florida fruit increased after the freeze, when 40,000 boxes were shipped during the 1895-96 season, and 70,000 boxes in 1896–97. In those days, growers used river steamers on the Caloosahatchee to bring their fruit downstream to Ft. Myers, just as northeast Florida growers had used the St. Johns River to bring their fruit to Jacksonville. In the early 1900s, some speculated that the Caloosahatchee basin would grow to be the "orange and grapefruit section of the world." However, growth

was slow. Labelle continued to be a sleepy little cattle town well into

The History of Florida Ci

the 20th century. The prediction that southwest Florida would become a dominant citrus-producing region has only come about over the last 30 years. Prior to 1965, the bearing acress of citrus of all varieties in Hendry County totaled only 1491 acres, and in Lee County, 1591 acres. In contrast, Polk and Lake counties grew 127,629 acres and 106,627 acres, respectively.

Freeze Pressure

At this point in history, two things became apparent after an extremely severe freeze in 1962 destroyed a major portion of the central Florida crop. One, the groves in Lake and Polk counties were very vulnerable to cold and could not guarantee a full crop every year. And two, there was no longer room for expansion in the traditional citrus-growing areas of central Florida. A grower's outlook on the shortage of land was well expressed by J. R. "Bob" Paul of Winter Haven in a conversation with his son Gene in the 1960s: "Gene, there aren't any big tracts of good citrus land left in Polk County. We've continued on page 52

Florida Grower • Mid-August 2000

Microsprinklers

Trunk protection

http://citrusindustry.net/2016/10/05/evaluation-of-tree-t-pees-for-freeze-protection-in-young-citrus/

Factors affecting freeze tolerance

- Grove location and topography
- Minimum air temperature and duration
- Freeze acclimation

- Species and cultivar of scion and rootstock
- Condition of the tree and (vigor and growth stage; previous cultural practices)
- Presence/absence of overhead or ground cover

Cultivar tolerance

Freeze tolerance is highest in trifoliate orange (*Poncirus trifoliata*)

Trifoliata > Kumquat > Sour orange > Mandarin > Sweet orange > Grapefruit > Pummelo > Lemon > Lime > Citron

Pre-hardening is necessary to achieve protection

Thank you

RESPIC

UNIVERSITY of UNIVERSITY of FLORIDA Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center

Ute Albrecht ualbrecht@ufl.edu **UF|IFAS** UNIVERSITY of FLORIDA